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In this talk T will discuss how relativistic meson theory is developed
and applied to the description of few nucleon systems, and show how the ideas
which emerge from this discussion provide a natural, theoretical foundation
for the Dirac treatment of oroton-nucleus scattering.

There are several different ways to develop the relativistic description
of feu body svstems, and four of these methods, all based on the consideration
of how to sum an infipite set of diagrams, will be discussed briefly in Sec-
tion 1. I will then dipress briefly, and show in Section 2 how one of these
methods provides a natural justificestion for the popular Dirac treatment of
proton-nucleus scattering. Section 3 will return to the few body system and
summarize some applications of the relativistic few body equations derived in
Section 1, including a brief account of some recent fits to the nucleon-nucleon
phase shifts not yet published.

) What is relativistic meson theory, and what role can it have in nuclear
ohysics now that we k%now about quarks and QCD? I view it as a consistent rela-
tivistic theory of effective interactions between selected quark clusters,
which are treated as structureless particles. The emphasis is on the words
"consistent" and "relativistic.” This means that we will insist that the
theory be manifestly covariant at every step (although I will not hesitate to
do calculations in especially convenient frames of reference), and that all
interaction operators involving external probes be consistent with the rela-
tivistic "potential" ¥ {which is actually the kernel of an integral equation}.
Some attempt is made to allow for the structure of the mesons and nucleons by
inserting phenomenological form factors at the vertices and, in some cases,
using simple phenomenoloesical functions for self energies, but the basic
equations of the theory are obtained from a Lagrangian for peoint-like mesons
and nucleons. The justification for using such a theory today is that it

gives a calculable theory of nuclei which emplovs the degrees of freedom most



apparent in nuclear physics, and which through detailed comparison with ex-
periment can help us uncover those phenomena which require the explicit use
of quark degrees of freedom.

1. RELATIVISTIC WAVE EQUATIONS

1.1 Types of Equations

Relativistic eguations can be written in the following very gengral form

M=V o UGH IEY

where M is the scattering amplitude, V is the kernel or relativistic potential,
and G the propagator. If ¥ is in some sense small Eg. {1} can be solved by
iteration as shown diagrammatically in Fig. 1 for two particles. We see that
the equation can be regarded as a means of summing a generalized Born series,
or summing an infinite number of diagrams. If V is small, the solution to (1)
will not differ significantly from taking V alone, and the equation is not doing
much for us. However, when V is large, the Born series will not exist, but the
solution to (1) will. In this sense relativistic equations enable us to treat

non~perturbative problems.
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FIGURE 1
Bound state wave functions can be obtained from the residues of the bound

state poles of M. Near the bound state pole at MB'

+ .
[]
M (p pr,p) = HRILLoD) L p (2)
T
where p and p' are the relative 4 momenta of the final and initial state respec-
tively, P is the total 4 momentum, and P is a remainder function regular at P2 =
2
Mp. Substituting {2) into (1) one can obtain both the bound state wave equa-

tion and the normalization condition(1)

r =T (3)
1= 1t (QEE.F G QB_G)F (4)
dP ap®
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The relativistic wave function " is related to the vertex function I' by
W = UGT
I = v . {5)
To find the relativistic kernel V from an infinite class of diagrams,
one must first decide on what class of diagrams to sum, and then introduce a
scheme for organizing the sum. I will assume that the smallest class of dia-
grams which will describe the dynamics adequately is the sum of all ladder and
crossed ladder Feynman diagrams (with form factors at the vertices and on the
propagators). In particular, it is known that craossed ladders make important
contributions, and therefore the ladder sum alone is certainly not adequate.
If particle production and inelasticities are to be treated explicitly, a
larger class of Feynman diagrams including self energy contributions is almost
certainly necessary, but for elastic processes the ladder and crossed ladder
sum may be sufficient. This sum, up to 6th order in the coupling constant, is
shown in Fig. 2 for the case of two heavy nucleons exchanging a light meson.
The ladder diagrams are (a), (b), and (d); all others are crossed ladders.
The way in which this sum is organized now depends on how the two body

propagator G is defined. In the most general case, the propagator G is con-
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(1) FIGURE 2

strained according to some covariant prescription so that it depends on only

the relative 3 momentum instead of the relative 4 momentum. The advantage of



sucn an aoproach is that the number of free variables is thereby reduced,
making the resulting integral equation simpler to solve and easier to inter-
pret. The kernel V corresponding to the constrained G is then the sunm of
all diagrams which cannot be obtained by iterating lower order kernels as
shown in Fig. 1 (where the constrained propagator is represented by a verti-
cal dotted line cutting the two nucleons}. Hence the precise definition of
V depends on the definition of G. The kernel up to 4th order is shéwn dia-
grammatically in Fig. 3. The rirst diagram {3a) is the one boson exchange
(OBE) contribution, the second (3b) is the difference between the full box
diagram and the first iteration of the OBE, which is called the subtractéd
box, and the third (3c) is the crossed box. If the unconstrained 2 body

(2)

propagator is used, as in the Bethe Salpeter (BS) equation , then the full
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FIGURE 3

box is obtained after one iteration of the OBE, so the subtracted box is zero.
With constrained propagators, the full box is not obtained after one iteration,
so the subtracted box must be added. In 6th order subtracted boxes and sub-
tracted crossed boxes coming from Figs. 2d-f must be ipcluded in the kernel
as well as the fully crossed ladder diagrams (2g-1), and so on to ‘all orders.
What the relativistic equation has done for us is to replace the full sum in
Fig. 2, which certainly does not converge for large coupling constants, with
a sum like that shown in Fig. 3 for the kernel. The procedure will only work
if the sum for the kernel converges rapidly. Before 1 discuss this important
issue, I will review a number of popular choices for the propagator G.

Four choices of G are summarized in Table I. The BS equation conserves
4 momentum . in the intermediate state, so it remains on the energy shell defined
by Po = W, where W is the initial energy of the two body system and Po is the
total energy in the intermediate state (both in the CM system). This leaves
211 four components of the relative 4-momentum, p = %(p1 - bzl, unconsﬁrained.
Alternatively, if we restrict one particle to its positive energy mass shell

(3) -2.1/2

{say particle 2} , then Po = W and Pog = (MZ +p)

= Ep fixes the relative

ensr in a covariant wa
3 y
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leaving only the three components of P as free variables. If we wish to re-
strict both particles to their mass shells, we must drop the requirement that

Po = W, or go off the energy shell. One way of doing this was developed by

Logunov anc Tavkhelidzeiq} and by Blankenbecler and Sugarts,

this method is due to Todorov(e). An advantage of this approach 1s that the

; a variation of

number of spin degrees of freedom is reduced because both particles are on

shell and hence have only two spin degrees of freedom. Finally, the light

(7 comes from a different approach in which field theory is

gquantized on the light front(e), which loosely speaking refers to quantizing

front equation

fields at equal values of T = t+x (the velocity of light c is taken equal to

unity and x can be any one of the three directions in space). The variable

Relativistic Two Body Equations

Name Description of Number of Variables
G Momentum Spin
Bethe-Salpeter On energy shell
(BS) Both particles off
mass shell 4 4 x & = 16
Particle 1 off shell On energy shell
(01) One particle off mass
shell i 3 2x4=z8
Blankenbecler-Sugar Off energy shell
Logunov-Tavkhelidze Both particles on mass
(BSLT) shell 3 2x2=4
Light Front off p_=E - Py shell
(LF) Both particles on mass
shell 3 2x2=4
conjugate to T is p_ = E - P, which now plays a role similar to that usually

played by the energy, so that this approach bears a close formal resemblance
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to oid fashioned time ordered perturbation theory, where all particles are
on the mass shell, but intermediate states are off the energy (p_ in this
case) shell. However, while there is a formal resemblance between T ordered
diagrams and time ordered diagrams there is a profound difference which can-
not be overemphasized. The T ordered formalism is nanifestly covariant at
every step while time ordered perturbation theory breaks covariance. This is
related to the fact that T is invariant under boosts in the x direcfion, while
t is not. A disadvantage of the light front formulation is that it breaks
manifest rotational invariance. Several authors have used LF techniques in
recent years.(q-TZ}

The extension of relativistic equations to more than two bodies is a
subjiect of increasing importance. All of the equations mentioned above can
be extended but the BS equation has 4 (N-1) integration variables while the
constrained equations (in common with non-relativistic equations} have only
3 (N-1). It is important that any n body system with n<N particles must be
dynamically independent of the others when the others are beyond the range of
forces. A serious deficiency of the BSLT equation is that it does not satis{y

this requirement. Namyslowski and Neber(13) have shown that the three body

LF equation satisfies the cluster property, and it has been shown(14)
-that the three body generalization of the G1 equation also has this property.

T wish to emphasize that the constrained equations should not be regarded
as an approximation to the BS equation. From a relativistic point of view,
all of the equations are equally good starting points and the question of
which equation is "best" will depend on other criteria, such as how rapidly
the series for the kernel corverges. -

1.2 Convergence of the infinite series for ¥

1 now want to discuss the convergence of the infinite series for V, the
first three terms of which are shown diagramatically in Fig. 3. If the terms

in the 2nth

order kernel cancel among themselves, ﬁaking the full Znth order
kern=l smaller than a typical 2nth order term, we conclude that the series
for V converges more rapidly than if no cancellations were present.

As an example of how these ideas work, consider the case of a light par-
ticle m interacting with a very heavy, neutral scalar particle M. It has been
known for many years(15) that in the limit as M+= the ladders and crossed
ladders cancel in such a way that inc total result can be obtained by.iterating

the OBE kernel with the heavy particle restricted to its mass shell {other

—He



constrained prescriptions also work; when M=o they are equivalent to putting

the heavy particle on shell). This means that the irreducible kernel reduces

M M

FIGURE 4.

exactly in this limit to OBE as shown in Fig. 4 (there the x means the par-
ticle is on-shell). In terms of the diagrams shown in Fig. 3, it means that
the subtracted box and the crossed box exactly cancel when M+<, Furthermore,
the same cancellation takes place in every order, leaving the OBE to give the
exact relativistic one body equation for the light particle m (Dirac if m has

spin %4 Klein Cordon if m has spin zero) moving in an instantaneous potential.

Unfortunately, the BS equation does not have a one body limit in this
sense. In the BS equation, the subtracted box is exactly zero, leaving nothing
to cancel the contributions from the crossed box. This happens in every order,

so that the BS kernel in the M= limit remains an infinite sum. .

When both particles have spin, or when the heavy one is charged, such

general results have not been proved, but may very well be true in some cases.
For example, the cancellation has also been observed to work in hth order for
% particles in Q?D.{3’16-17} The cancellation also occurs in kth

order for two heavy spin E-nucleons exchanging rseudoscalar, isovector pions,

two spin

provided the w-N interaction is treated in a manner consistent with chiral
symmetry.(15) T will now describe these results in somewhat more detail.
To order 52 in the n-N interaction, chiral invariance implies that the

pseudoscalar gYSTi coupling must be accompanied by a g-like 2nNN contact term



of the form g 6 /M where i and j are the isospin indices of the two pions.

There are then 6 diagrams which

contribute to the Ath order kernel

é é _ E ? . \E:' as shown in Fig. 5. The first two
: : : ! AN {a) and (b), are the subtracted box
(o) (b} () {shown for the case when-particle 2
is off shell), (c¢) is the crossed
*h—jnr—ﬁﬁ 4*1:——T~¥ 4*77~§—«- box, (d) and (e) are triangle dia-
AR + _\"f + % i H grams involving one contact inter-
— e action, and (f) is the bubble in-
(d) (e) {(t) volving two contact interactions,
FIGURE 5 In a scalar ¢3 theory, only the

first three occur.

In Ref. (15) the 4" order kernel for both the ¢3 and realistic chiral
models were studied for a restricted propagator with a factor
8, [(1+0) (%)~ (1-0) (42-x32))
where -1<w<l varieés so that when v = 1 particle one is on shell, when v = -1
particle 2 is on shell, and when v = 0 they are symmetrically off shell similar
to the BSLT case. For the scalar case, in the 1imit as M==, the result for the

subtracted box (4S) and the cnossed box {4-) is

Vhs = vo - -‘&[(1—\;2) + 2(1w2)e]vl

-y + &
v),_= -V_ + Ef2 + belv,

(6)

where p is the exchanged particle mass,

1 2 2 :
6 = ={p" + 'S - 2Me) (7

u
{s a non-local, energy dependent term, and

L [
__E& -1/2
Vote) = j Betete-y)”
4y°
L
v (t) = & (8)

gumt (Lbp-t)
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with t = -(E - ;')2 being the momentum transfer. The conclusions are that (i)
the leading term Vo cancels for all choices of v, but that (ii) ﬁﬁly the choices
|v] = 1 pive an energy independent, local potential to order M-l. Note that
vhile v = 0 minimizes the local piece of the potential, it also maximizes the

non-local, energy dependent piece. For the realistic chiral model, the 4 terms

are
Vo = (3-21. 1. ){-U + B1v2)u, + B1-vP)eu,)
4s 1712/ M 1M 2
= . _ 2y
Vv, = (3s2t T, {-U )+ S U, )
= _ i2p
Via =20, - YU

where 6 is as defined in (7), and

-]

G o & at_ ;ie=w?1, Y2
° eund 2 & £
Y
i = 2
hu
U = _S.h_.._ T i -lf-l-- ’
2 oMt J2 -t e (10)°
u .

The conclusions are the same; the leading term Uo cancels for all v, but only

for |vl = 1 does the energv dependent, non-local part vanish.
2. IMPLICATIONS FOR PROTON-NUCLEUS SCATTERING

Before turning to the applications of these ideas to the few body systems,
it is interesting to see how they provide a natural foundation for the Dirac
treatment of proton-nucleus scattering reviewed elsewhere at this conference.

If the target is a heavy closed shell nucleus, and its internal structure
is ignored, then proton-nucleus scattering is precisely the case described in
Section 1 and illustrated schematically in Fig. 4. We have a light sbin 1/2

particle (the proton} scattering from a massive spin zero, I=0, particle

0o



(the nucleus). If the basic interaction between the proton and the nucleus

can be described by meson exchanpge, then the discussion following Fir. &4 shous
that the scattering can be described by a Dirac equation for the proton moving
under the influence of an instantaneous OBE potential generated by the nucleus.
The OBE potential is exact in the limit when A (the mass number of the nucleon)
pecomes very large. The fact that the nucleus has spin and isospin zero limits
the form of the OBE votential to I1=0 pieces of a scalar and the 4th Eomponent
of a 4 vector, in agreement with the treatment described elsewhere in these
proceedings.

The structure of the nucleus modifies this elementary point of view in two
ways. First, the structure of the meson-nucleus vertex must be taken into
account, and the simplest, relativistic impulse approximation for this vertex

is the triangle diagram shown in
Fig. 6, where the (A-1) nuclear sub-
system, which is a spectator to the
t meson-nucleon interaction, is taken to

be on-shell. (This approximation has
been used for the deuteron form factor,
where A = 2 and the meson is replaced

= by the virtual photon exchanged be-

A (A-1) A tween the deuteron and the scattered

electron.(la)) One must sum over all
FIGURE 6 nuclear states of the (A-1) spectator
system. The interaction nucleon is off-shell, but it is an excellent approxi-
mation to retain its on-shell degrees of freedom.only, except possibly at very-
high momentum transfer. The nucleon - A - (A-1) vertex labeled T in the figure,
can be related to the single particle {relativistic) nucleon wave function, and
the triangle diagram is the relativistic analogue of the single particle density.
A second consequence of the structure of the nucleus which must be taken

into account is the presence of excited states of the target nucleus, which

FIGURE 7
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will be denoted A%. This means that the second order interaction will con-

tain a sum over A* states, as shown in Figure 7a. If we replace this sum by

free proton - (A-1) scattering we obtain the diagram shown in Fig. 7b. {Other

contributions, such as those shown in Fig. 7c, will be neglected.) Doing this

to all orders, and recalling the integral equation for the nucleomr-nucleon
scattering amplitude M, these diagrams
reduce to the more general triangle
diagram shown in Fig. 8. ([This dia-

gram is the basis of what is referred

M to as the relativistic impulse ap-
proximation (RIA) in the proton-
nucleus field. The simpler diagram,
Fig. 6, where the meson is replaced
by a photon and the off-shell charac-

A (a-1) A ter of the interacting nucleon is
retained, is referred to as the RIA
in the field of electromagnetic in-

FIGURE 8 teractions.] This then includes all
jterations and interactions except those in which the target nucleus is in its
ground state. Fig. B is therefore the lowest order optical potential - and
when inserted in the Dirac equation gives the full result, including successive
interactions in which the target nucleus remains in its ground state.

The "derivation™ given above is oversimplified; interactions of the kind
shown in Fig. 7c have been neglected, and these give rise to the higher order
corrections to the optical potential. Nevertheless, the discussion shows how
relativistic meson theory permits the consistent treatment of both the few

body system and proton-nucleus scattering, and shows how they are interconnected.
3. APPLICATIONS OF RELATIVISTIC FEW BODY EQUATIONS

I now want to discuss a few applications of these ideas to calculations
of the bound state and scattering properties of few body systems.

3.1 The Two Nucleon System

Fits to the two nucleon phase shifts for energies below 300 MeV have been
obtained by Fleischer and Tjon(19} and Zuilhof and Tjon‘eo} using the BS equa-
tion in OBE approximation. These fits have been extended to energies up to
1000 MeV by van Faasen and Tjon(zjl, who describe the inelasticity by lncluding

NA intermediate states. Fits to the phase shifts below 400 MeV have also been
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obtained by Gross and Holinde using the G, equationtez), and T want to describe

these new, unpublished results in a little more detail.

The relativistic kernel employed in Ref. (22) consists of an OBE model with
only four mesons: T, O, p, and w. {Instead of varying the ¢ mass and coupling
constant, two sigmas of fixed masses at 350 MeV and 760 MeV were chosen, and
the couplings of each varied.) Form factors were used at the meso&-ﬁucleon
vertices, and a form factor was also used with the off-shell nucleon propagator
to improve convergence. While only four mesons are used, the number of para-
meters varied is similar to that used in conventional OBE models with more
mesons, because two mixing parameters were used which do not appear in usual
approaches. These are X and y, where )\ varies the fraction of YS to YSYU
coupling at the mKN vertex(1), and p varies the fraction of oV and P couplings
at the pNN vertex. The 7NN and pNN couplings were defined so that when the
nucleons are on their mass shell the coupling is strictly independent of the
value of the mixing parameter (for the pNN coupling one uses the Gordon decompo-

sition, which only holds on shell, to transform o"V into PY). Hence, dependence

of the results on these two parameters is a direct measure of the possible im-
portance of off shell effects, and we find that such effects are large. In
fact it is because of the splitting between the 180 and 351 phase shifts in-
troduced by the A dependence that we do not need the isovector-scalar meson §
in these fits.

Another novel feature of the G1 equation employed in these fits is that
the off-shell Dirac nucleon has four spin states; two for its positive energy
State and two for its negative energy state. One can separate the positive
and negative energy "“channels", giving a coupled set of equations of the fol-

lowing form(1)

(ZEk R PR A VAR N A '
W o= vt e v (11)
In Ref. (22) the approximation ¥~ = O was taken, yielding the “solution"
2
-+ I‘J ‘

(2Ek-wnh* = (V Yt (12)

which shows how the negative energy channel, which makes no contribution to the
asymptotic states, modifies the effective interaction at short range. To obtain
Eo. (12) one uses the fact that the matrix potential in Eq. (11) is hermitian.
Energy dependent, effective interactions of the type shown in Eq. {12} are also
familiar from the study of proton-nucleus scattering.

-12-
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Another novel feature of this treatment is the presence of virtual "wrong"
symmetry channels. These channels, which are symmetric under the interchange
of three momentum and spin indices, are not forbidden by the Pauli principle in
a region of phase space where the relative energy p0 is not zero, but must vanish
when p_ = 0 (i.e. when both particles are on shell). It turns out that it is
necessary to explicitly antisymmetrize the potential to guarantee that these
channels are really virtual (i.e. are 2ero when Py = 0), and this has been
done in Ref. (22). These effects are present only for partial waves where L=d.

The result of all these considerations is that the coupled equations {11}
contain four channels for all partial waves. For partial waves which are
coupled by the tensor force in non-relativistic theory (e.g. 381 - 3D1) there
{s a doubling due to the presence of negative energy states. For partial waves
which were formally uncoupled, there is both a doubling due to the presence of
negative energy states, and due to coupling to virtual wrong symmetry channels.

Relativistic and off mass shell effects can then be investigated. It has
been known for over ten years that a major effect of the negative energy channel

is to provide repulsion at short range(1).

1.5 T T
E ) gol E Fig. @, taken from Ref. (1), shows that
1.0 ; i ——— THqun;E the quadratic terms, which are the
o5 é Ea ::: ;E%;ﬁk E soquared terms in the effective potential
o g e given in Eq. (12), are large and repul-
E 0 : o ] sive. We find the same effect in the
> E ] actual fits to the phase shifts, so
0.5 - 3 that these effects are not an artifact
io é o) é of the anoroximations made in Ref. (1).
o 5 Preliminary results give a value of
-1.5 E Lt . X = 0.331, very close to the value of
03 x (M) o ) = 0.41 preferred in Ref. (1), and
show that V'~ terms coming from mesons
FIGURE @Q other than the pion are, in some cases

of comparable importance to the large VY contribution. One effect which is
w
orobably due to this reoulsion is that the « counling constant which emerges

from this fit is
2

w _
T = 9-%2
a yalue similar to that obtained in Ref. {(20), and considerably smaller than

that needed in many non-relativistic OBE fits.
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The effect of the coupling to virtual-wrong symmelry channels has been

1 3P1, and 302 channels. In all of these cases the eflflects

at 300-400 MeV are well outside of the error bars for the empirical phase shifts;

1
looked at for the P

1 . . .
in the P1 case this coupling alters the shape of the phase shifts in a helpful
way, and in the 302 case it provides helpful repulsion. -
Deuteron wave functions have not yet been obtained for this case. However,

it seems very likely that the wave func-

tions obtained in Ref. (25) and shown in

Fig. 10 will be very similar to what will
be obtained here. In addition to the
omi'’? large S and D state wave functions u and
w, one obtains smaller negative energy

P state wave function vt and vS corres-—

ponding to spin singlet and triplet com-

binations. Relativistic deuteron wave

functions have also been obtained by
FIGURE 10 Zutlhof and Tjon'28). _
What is one to conclude from all this? While it is somewhat early to say,
it is my view that almost any equation with a sufficient number of bosons and
about 10 parameters can be made to fit the NN phase shifts below 400 MeV. This
does not mean that the differences between relativistic equations are small, or
that the relativistic effects themselves are small. In fact, such differences:
are known to be numerically 1arge(20'27,. Rather, it appears that adjustments
of 10 parameters can largely compensate for these differences. Since the para-
meters have physical significance, the extent to which their adjusted values
a2gree with values determined from other physical processes could be a test of
the validity of the equation, Perhaps a better method is to see how well a
given equation, "tuned" to the two body problem,is able to describe the three
body problem, nuclear matter, and other calculable systems, such as proton-
nucleus scattering.
3.2 Other Systems
There is evidence that relativistic effects increase the binding of the
three bodv svstem, reducing the discrepancy between the calculations and ob-

served binding. Coester and wiringa(za) found an increase of 1.7 MeV for the

Q
triton binding and 4.3 MeV for the alpha binding, and Rupptz'], using a sepa-

rable BS eguation, found similar effects. Unfortunately, neither calculation

b=



can be regarded as treating the dvnamics in a realistic way. A (glly relati-
vistic treatmenf of the three body svstem, with realistic¢ dynamics consistent
with the two body problem, is needed. Such a calculation, using the three body
version of the G1 eguation is possible(14). This approach satisfies the cluster
oroperty, yields relativistic Faddeev equations with the same number of momentum
variables as the non-relativistic equation, and (as in the non-reléﬁivistic case)
can be reduced analytically to a two dimensional integral equation for coupled

partial waves(30).
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